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LETTER TO THE EDITOR 

A new boson realization of the su(3) algebra 

Zurong Yu 
Department of Physics, Tongji University, Shanghai 200092, People's Republic of China 

Received 18 April 1990, in final form 20 June 1990 

Abstract. A new boson realization of su(3) has been given and a set of recursion formulae 
of the transformation matrix, which turns the Dyson into the Holstein-Primakoff 
representation, has been presented. The multiplicity that may occur in the reduction of 
su(3) 3 U( 1) +U( 1 )  is automatically determined. 

In this letter, a new boson representation will be given for the generators of the su(3) 
algebra in the Cartan standard basis su(3) 2 U( 1) +U( 1) by means of the generalized 
coherent state ( G C S )  technique. The GCS theory has been widely discussed in the 
literature (Dobaczewski 1981, 1982, Rowe 1985, Hecht 1987, Zhang et a1 1989). A 
main problem of this theory is to find its measure and to calculate the necessary 
integrals. For most of the higher symmetry algebras, however, even if the measure can 
be found, it is often so complicated that the necessary integrals become very cumber- 
some and difficult to use in practice. A basic idea for overcoming this difficulty is to 
change the measure, turning the GCS onto the Bargmann measure (Dobaczewski 1981, 
1982, Rowe 1985). The price paid for it is that the unitarity of the operators is partly 
lost. The second step is to find a similarity transformation such that the transformed 
operators restore unitarity. 

From definition, we know that the GCS depends sensitively on the coset space of 
a group G, i.e. an irreducible representation (irrep) of G. For the SU(3) group, the 
non-normalized GCS can be written as 

r 1 

where { H , ,  H,, E,,, E,,, E*t(,+,)} are the generators of the su(3) algebra in the Cartan 
standard basis; a and P are the two simple roots, the Dynkin diagram is as follows 

A P 

a P 
0 0 

here A and p are the two non-negative integers, and (A, p )  label the irreps of the su(3) 
algebra; {C,} are complex variables which will be equivalently numbered by the root 
vector themselves; is the highest-weight state with highest weight A. Because 

P 
2 A + p  A + 2 p  

A=-&+- 
3 3 

a, p E simple roots 

therefore A . a  = A/6, A . p  = p/6 .  Obviously, when A = 0 (or p = 0) the maximal stability 
subalgebra is 4 2 )  with {H,, H,, E,, E-*}  (or { H I ,  H2, E @ ,  E + } ) .  Thus the coset space 
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is SU(3)/U(2). On the other hand for arbitrary irreps of the SU(3) group, i.e. A # O  
and p # 0. The maximal stability subalgebra is U( 1)  x U( 1) with the generators {HI, H2}, 
therefore the corresponding coset space is not SU(3)/U(2) but SU(3)/U(1) x U(1). 
For the latter, if we attempt to construct the GCS using the subgroup U(2), then the 
so-called vector coherent state would be obtained (Hecht 1987). 

For the sake of simplicity, we redefine 

~ , = v %  E, A2=v% E, A3 = v% Ea+@ 

B, = v% E-,  B2 = v% E-, B3 = v‘% E- , -p  (3) 

C, =m HI C2=6H2 

such that the canonical commutation relations (Wybourne 1974) of the generators in 
the Cartan basis become 

[Cl, c21=0 (4a) 

(4b) 
[C, 9 A11 = AI 

[C2, 4 1  = 3A1 [G, A21 = - 3 4  [G, 
[A, ,  A21 = 2A3 

[A1 , & I =  2(Cl+ C2) 

[A2 , B21= 2( c, - C2) [A,, &I=  2Bl [A3,  B3]=4Cl.  (4d) 

[Cl f A21 = A2 c CI 3 A31 = 2A3 

[ A I ,  A31 = 0 [A2, A31 = 0 
(4c) 

[A, 9 &I = 0 [AI ,  &I = -2B2 

At present, the GCS of the group chain SU(3) 2 U ( l )  x U( 1 )  can be rewritten as 

12) = exp{Z?Bi -k Z?B2 +zf&}ld)o) ( 5 )  

where 140) = l ~ ; ~ ~ A - w ) ,  A + p and A - p are the eigenvalues of the operators C, and 
C, ,  respectively. 

As mentioned above, the next step is to introduce the Bargmann space. It is well 
known that the Bargmann space is isomorphic with the many-boson space, so the 
states and operators of an algebra may directly be turned onto the boson space by 
means of an Usui-like operator (Dobaczewski 1981, 1982). 

Here, the Usui-like operator is defined by 

I $ ) B =  ( 6 )  

V = (44 exp{ b:A, + b:A2 + b:A3}/O) (7) 

where is called the boson image of the state I$), for example the boson vacuum 
IO) is the image of the highest weight state Id)o). Note that the space defined by (6) and 
(7) is a subspace of the many-boson space, and called the physical subspace by 
physicists. Corresponding to the* transformation equations (6) and (7), the boson image 
O(D) of an arbitrary operator 0 of the su(3) algebra can determined by 

14)= I + ) B =  o‘D’I$)B 

where the O(D) operator is defined by 

v& = o ( D )  W 

and is determined by W = 1, W # 1 .  
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From (9), obviously we have 

P ) W =  v 6 ~ = ( 4 , \  . , [x, 01.. .I e x ) l o ) ~  (10) 

where X = b:A, + b:A2 + b l A 3 .  Using ( lo) ,  we immediately arrive at the following 
results: 

A, + AiD’ = b 1 - bib 2 3  

B1+ = 4Ab7 - 4b: b: bl - 2( b: - b: b:) b2 - 2( b: + b: b:) b: b3 

B2+ BID’ = 4pb: -4bib:b2+2( b:+ b:b:)bl -2( b: - b:bl)b:b, 

B3+ BiD’= 4(A + p )  b: +4(A - p ) b l  b: -4bT( b: b, + b: b2) -4b: b:( b: b,  - b: b2) 

A2+AID)= b,+b:b, A3 + AiD’ = b, 

- 4( b:b: + b:b:b:b:)b, 

Operators AiD’, BID’, Cl”’ are considered as generalized Dyson realizations of Ai, Bi, 
Ci su(3),  i = 1 ,  2, 3. Obviously, the operators of ( 1  1) are partly non-unitary. The origin 
of this is due to the non-orthonormality of the physical boson basis vectors. It can be 
restored by introducing a new map 

(+’Y (12)  )B = KIZ@,) 

where lZapy) are a set of orthonormalized basis vectors of the boson space 

where b:(b,), i = 1, 2, 3 ,  are the ideal boson creation (annihilation) operators; the 
quantum numbers cy, p and y satisfy the following selection rules: 

cy, p and y = 0 or positive integers 

cy12 f p / 6  - y = 0 or positive integers 

cy=O,1,2 , . . . ,  2 ( A + p )  

( 1 4 ~  
if cy =even 
if cr =odd 

p = *3a, *3(a - 2 ) ,  *3(cy -41, . , 

Y = 0,1,2,  . . . , ( ~ / 2  - IP//6). 

Corresponding to the transformation (12) ,  we have a similarity transformation 

(15) o ( H P ) =  K - ~ o ( D ) K  
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is valid, hence K must satisfy 

KK+( O‘D’) = (O+)‘”’KK+. (17)  

Equation (17) can be solve! for KKC.  The O(Hp) is called the Holstein-Primakoff 
realization of the operator 0. Because (Ct) ‘” ’  = ( CiD))+ and (CID))+ = Cl”’, i = 1, 2, 
therefore 

[ c(”), K K + ]  = 0 i = 1,2. (18) 

This means that KK has been diagonalized with respect to the quantum numbers a 
and p. 

Using the basis (13), we can obtain a set of equations for K K +  as follows: 

(4A - a  - P ) J ~ / ~ + P / ~ - Y ‘ + ~ ( K K + ) , , , , ( ( ~ ,  P ) - 2 J y f ( ~ / 2 - P / 6 - y ‘ + l )  

x ( K K + ) y , - l , y ( Q ,  P )  

x (KK+),,+1,,(a, P )  

- J ( r+  l ) ( a / 2  - P / 6  - .)I)WK+),,,,+,(a’, P 0 8 * ’ , * + l ~ P ’ , P + 3  

x (KK+) , , - l , , (~ ,  P )  

- 2 J ( y ’ +  l ) ( a / 2 + @ / 6 -  y r ) ( a / 2 + P / 6 -  y ’+  l ) ( a / 2 - P / 6 -  y ’ )  

= J ~ / + P / ~ - Y +  l (KK+)y, ,y(a’ ,  P 1 ) 8 a , , o l + i 8 p ’ , p + 3  

(19a)  

( 4 p  - + P)Ja / 2  - P / 6  - 7’ + 1 (KK’) y,,y( a, P )  + 2 J y ’ (  a / 2  + P / 6  - 7‘ + 1 )  
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and for (196) 

a = 3  p = * 9  y = o  

(f(K+)oo(3,9) =64A(A - 1)(A -2) 

(KK+)oo(3, - 9 ) = 6 4 P ( p - I ) ( p - 2 )  

a = 3  p=*3 y = o ,  1 

32A(2Ap + A  - p - 1) 16JZA ( A  - p - 1) 
16A(A + p  - 1)) 

16JZp(A - p + 1) 

(KK+)(3,3)=(  1 6 a A ( A  - p  - 1) 

1 6 f i p ( A  - p  + 1) 16p(A + p  - 1) 
3 2 ~ ( 2 A p  + p - A - 1) 

(Kk+)(3, -3) = ( 
Because the operator K K +  is Hermitian, we can diagonalize it by means of a 

unitary matrix U, 

U-'KK+U = a 2 . .  1. (20) 

K = U( I .)U-' K-'= U(  l / f i .  . . )U- ' .  (21) 

The eigenvalues a , ,  a 2 , .  . . , are real numbers. From (20) we immediately arrive at K 
and its inverse K-' 

Ja, UJa, 

Having found K and K - I ,  using (12) and (13), the basis vectors of the representation 
space can be given. 

So far, we have explicitly given a set of recursion formulae for the transformation 
matrix for the standard reduction of su(3) 3 U( 1) +U( l ) ,  which is a transformation from 
a non-unitary Dyson to a unitary Holstein-Primakoff realization. Another remarkable 
result is that it naturally solves the multiplicity problem that can occur in the reduction 
of su(3) 3 U( 1) +U( l ) ,  and the multiplicity is just equal to the dimension of the K matrix. 
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